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SUMMARY

This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets,
flashing into a two-dimensional axisymmetric domain, while in the two-phase region. In general, the
phenomenon starts off when a high-pressure, high-temperature liquid jet emerges from a small nozzle
or orifice expanding into a low-pressure chamber, below its saturation pressure taken at the injection
temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains
in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change
by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a
two-phase high-speed mixture in various directions, expanding to supersonic velocities. In order to reach
the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave.
The balance equations that govern the phenomenon are mass conservation, momentum conservation, and
energy conservation, plus an equation-of-state for the substance. A false-transient model is implemented
using the shock capturing scheme: dispersion-controlled dissipative (DCD), which was used to calculate
the flow conditions as the steady-state condition is reached. Numerical results with computational code
DCD-2D v1 have been analyzed. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flashing phenomenon of metastable liquid jets is important for industrial and technological
applications. Many theoretical, experimental and computational researches have been developed in
order to better understand and predict the fluid behavior undergoing a sudden phase change from
liquid to vapor. In this field, mathematical models and predictive computational codes are of partic-
ular interest. These models should incorporate sufficient understanding of these phenomena; on the
other hand, numerical simulations must be adequate in solving engineering application problems.
Some applications of the present study address situations reported in industrial accidents [1], in
fuel injection [2], and in safety and relief [3], to mention a few.

Evaporative phenomena have been studied by Simões-Moreira [4] in which he experimentally
studied the formation of adiabatic evaporation waves in superheated dodecane (C12H26) at labo-
ratory conditions. As this fluid can be classified as a ‘retrograde’ substance, it may undergo a
complete phase change under certain state conditions.

In the theoretical and experimental study of shock formation in superheated liquid jets, one
cites: Kurschat et al. [5], which studied the evaporation of superheated jets from an expansion
nozzle into a vacuum chamber using a fluid of high molecular complexity (‘retrograde’), named
perfluor-n-hexane (C6F14), in their tests. Vieira [6, 7] and Vieira and Simões-Moreira [8] built an
experimental apparatus to study the behavior of flashing liquid jets into low-pressure environment.
The two-phase high-speed expansion region comes to an end due to the formation of an ellipsoid
or spheroid shock structure enveloping the liquid jet core. As an example, a shock wave structure
occurs during the expansion of a liquid kerosene jet with injection pressure of 600E+03 Pa
discharging in a low-pressure chamber at 1.6E+03Pa. A Schilieren image of this expansion and
shock is shown in Figure 1.

In numerical studies of shock wave formation in superheated liquid jets expansion, one may cite:
Simões-Moreira et al. [9] who analyzes the problem of the shock wave formation in flashing liquid
jets from a one-dimensional point-of-view. They employ a one-dimensional hemispherical approach
and implement a simple computer code named ShoWPhasT-1D—‘shock waves with phase transi-
tion’. With reference to steady flashing of metastable liquid jets in two-dimensional axisymmetric
domain, the two-phase region, one has: Angelo [10] who developed the code ShoWPhasT-2D.
Angelo [11] improved the code, but his new code could not capture directly the shock wave

Figure 1. Shock wave formation in kerosene flashing jets, Vieira [6].
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structure and as a result he implemented a capturing scheme algorithm to find the shock location
(see also Angelo and Simões-Moreira [12]). An important contribution was the first version
of the code: ShoWPhasT-2D v1. Avila et al. [13] implemented a computational code, named
ShoWPhasT-2D v2, which is an improved version of previous codes. It has significantly reduced
the computational time and obtained a more precise shock wave shape, when compared with
the experimental results of Vieira [7]. Avila et al. [14] presented similar results. All previous
codes were not capable of directly capture the shock wave structure, or additional algorithms are
used in the post-processing. Avila [15] implemented the computational code dispersion-controlled
dissipative-two-dimensional version 1 (DCD-2D v1), based on the scheme by Jiang [16], which
directly captures the shock wave and solves, in general, non-stationary phenomena. In particular,
here it resolves the phenomenon, in a two-dimensional axisymmetric domain, correspondent to
the two-phase region, assuming a false-transient approach.

2. FLASHING PHENOMENON

Flashing of superheated evaporative jets is a stationary three-dimensional phenomenon, in which
the liquid at the stagnation condition undergoes six relevant thermodynamic states, which can
be divided in a pre-two-phase region and a two-phase region. The states in the pre-two-phase
region are: initial state (reservoir state), denoted by (0); superheated state (or metastable), denoted
by (1); and post-evaporation wave state, denoted by (2). Four are the states of the two-phase
region: the post-evaporation wave state, the upstream compression shock wave state, denoted
by (3); downstream state of the shock wave, identified by (4); and the injection chamber state,
denoted by (5). One observes that the state (2) is a boundary condition for the two-phase region.
It corresponds to a quasi-parabolic surface of the liquid core. In Figure 2(a) one can observe
a still photography experimentally obtained by Vieira [7], in Figure 2(b) one can observe a
schematic of the phenomenon including the shock wave structure presenting the states involved in
the phenomenon from the initial state until the injection chamber state, and in Figure 2(c) one can

Figure 2. (a) Photograph of shock wave, Vieira [7]; (b) schematic representation of the phenomenon; and
(c) thermodynamic behavior of the phenomenon in a P−v diagram.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:622–637
DOI: 10.1002/fld



TWO-PHASE EXPANSION OF A METASTABLE FLASHING LIQUID JET 625

observe the saturation curve in a P−v diagram (pressure×specific volume) and the thermodynamic
states of the phenomenon. For a more detailed description of the pre-two-phase region, works by
Simões-Moreira et al. [9], Angelo [11], and Avila et al. [13, 15] may be revised.

3. TWO-PHASE REGION

In our application, the flashing of metastable liquids, in a two-dimensional domain, is a steady-
state problem. Vieira [6, 7] and Vieira and Simões-Moreira [8] studied it experimentally (from the
reservoir to the two-phase expansion) under a steady-state regime. Furthermore, Angelo [10, 11]
and Angelo and Simões-Moreira [12] carried out a numerical study of this flashing phenomenon,
in the two-phase region, for the same steady-state condition, while Avila [15] studied it in the
two-phase region expansion, both in steady-state or transient conditions (false transient).

3.1. Physical domain and grid

The physical domain contour is given by �=⋃4
i=1�i , correspondent to the two-phase region, is

presented in Figure 3(a). The contour coordinates are known and denoted by (x0, y0).
Conformal mapping was used to obtain the numerical grid for the physical domain. One considers

the following transformation T :(x̄, ȳ)→(x, y), where the inverse transformation converts the
physical domain into a unitary square. An elliptical boundary value problem for the coordinates
x= x(x̄, ȳ) and y= y(x̄, ȳ) is represented by

g22
�2x
�x̄2

−2g12
�2x
�x̄�ȳ

+g11
�2x
�ȳ2

= 0

g22
�2y
�x̄2

−2g12
�2y
�x̄�ȳ

+g11
�2y
�ȳ2

= 0

(1)

Figure 3. (a) Physical domain and (b) physical grid.
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where

g12= �x
�x̄

�x
�ȳ

+ �y
�x̄

�y
�ȳ

, g11=
(

�x
�x̄

)2

+
(

�y
�x̄

)2

, g22=
(

�x
�ȳ

)2

+
(

�y
�ȳ

)2

(2)

with the Dirichlet boundary conditions

x |� = x0, y|� = y0 (3)

The solution to this problem generates a structured physical grid, as shown in Figure 3(b).

3.2. Governing equations

The flashing phenomenon of superheated liquids, for the case of inviscid fluid in a two-dimensional
axisymmetric is modeled by the following conservation equations: mass conservation, momentum
conservation, and energy conservation. This system formed by four equations presents five
unknowns or primitive variables, as {�,u,v, p,e}, density, x-velocity vector, y-velocity vector,
pressure and internal specific energy, respectively, where E=�e+0.5�V 2 is the total energy and
V =√

u2+v2 the velocity vector module. In order to solve the system of equations, we used the
Lee–Kesler state equation. It is important to point out that the quality, x , is used to calculate all
other thermodynamic properties.

3.2.1. Cartesian coordinates. The two-dimensional vectorial conservation laws form a system of
quasi-linear partial differential equations of first order, given by

�U
�t

+ �F
�x

+ �G
�y

+ S

y
=0 (4)

where

U =

⎡
⎢⎢⎢⎢⎢⎣

�

�u

�v

E

⎤
⎥⎥⎥⎥⎥⎦ , F=

⎡
⎢⎢⎢⎢⎢⎢⎣

�u

�u2+ p

�uv

(E+ p)u

⎤
⎥⎥⎥⎥⎥⎥⎦

, G=

⎡
⎢⎢⎢⎢⎢⎢⎣

�v

�uv

�v2+ p

(E+ p)v

⎤
⎥⎥⎥⎥⎥⎥⎦

, S=

⎡
⎢⎢⎢⎢⎢⎢⎣

�v

�uv

�v2

(E+ p)v

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

One designates U , the unknown variable of state (conserved variables), F and G the vectorial flux
functions, or simply the flux vectors, and S represents a source term.

3.2.2. Orthogonal curvilinear coordinates. The conservational laws of Fluid Dynamics are valid
for any coordinates system. The conservation equations are then transformed from Cartesian coor-
dinates (x, y) into Orthogonal Curvilinear coordinates (�,�). As a result one has the computational
domain that is a two-dimensional unitary square in (�,�) coordinates, with the boundary given by
�′ =⋃4

i=1�
′
i , as seen in Figure 4(a).
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Figure 4. (a) Computational domain and (b) computational grid.

The metrics of the orthogonal curvilinear system are

�x =Jy�, �y =−Jx�, �x =−Jy�, �y =Jx� (6)

where J is the Jacobian and {x�, y�, x�, y�} are approximated, for instance by means of central
difference scheme. Finally the system of conservational laws, in the computational domain, is
given by

�Û
�t

+ �F̂
��

+ �Ĝ
��

+ Ŝ=0,

Û = U

J
, Ĝ= 1

J
(�x F+�yG)

F̂= 1

J
(�x F+�yG), Ŝ= S

Jy

(7)

where Û is the conserved variables vector, F̂ and Ĝ the flux vectors and Ŝ the source term, all in
the computational domain.

3.3. Boundary conditions

In the physical domain, the known boundary conditions are: initial line (velocity, Mach number,
M , pressure, temperature, density, and quality), in the symmetry line (impervious condition), in
the far-field line (far-field pressure, p∞), and wall line (impervious condition). Following are the
boundary conditions:

�1 :u =
[

W2

sin(�+�)

]
cos(�), v=

[
W2

sin(�+�)

]
sin(�), M=1, p= p2, T =T2

� = 1

v2
, x= x2, �2 :u �=0, v=0, �3 : p= p∞, �4 :u=0, v �=0

where W2 is the normal velocity component after the evaporation wave, � is the wave angle, � is
the rotation angle, and v2 is its specific volume. The subscript ‘2’ indicates the thermodynamic
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values for the state post-wave of evaporation, as shown in Avila et al. [13]. At the boundary
contours {�2,�3,�4}, in order to obtain the thermodynamic properties, the numerical boundary
conditions are evaluated with order zero and one.

4. NUMERICAL SOLUTION: NON-STATIONARY METHOD

4.1. Flux vector splitting

The hyperbolic conservational two-dimensional system of equations for inviscid fluid flows in gas
dynamics have used the splitting method for the flux vectors, which apply the homogeneity principle
and the theory of the eigenvalues, for the F and G flux vectors, see Steger and Warming [17].
Let one consider the system of conservation laws equations, Equation (4). Then the flux vectors,
based on the homogeneity condition, may be expressed as

F = AU

G = BU
(8)

where the Jacobian matrices A and B are given by

A= �F
�U

, B= �G
�U

(9)

Substituting Equation (8) into Equation (7), the flux vectors, F̂ and Ĝ, are given by

F̂=(�x A+�y B)Û , Ĝ=(�x A+�y B)Û (10)

One will split the flux vectors F̂ and Ĝ, but first the Jacobian of the matrices Â and B̂ are
defined by

Â=�x A+�y B, B̂=�x A+�y B (11)

The evaluation of the Jacobian matrices of the flashing process of metastable liquid jets is revised
by Avila [15].

4.2. Dispersion-controlled dissipative (DCD) scheme

The dispersion-controlled dissipative (DCD) scheme is second order and belongs to the class of
the non-oscillatory shock capturing process. This class is different from conventional schemes
with dissipation, as the dissipative terms of the modified equations are not considered during the
scheme construction of the schemes, in order to avoid non-physical oscillations that might occur
during shock waves simulation. This method is a mixture of the Lax-Wendroff and Beam-Warming
with a ‘min mod ’ flux function.

Jiang [18] has conducted systematic tests of the dispersion-controlled principle since his first
work (1993), and he has published the conditions of dispersion for the non-oscillatory shock
capturing scheme. This principle aims at the removal of non-physical oscillations using dispersion
characteristics instead of adding artificial viscosity in order to eliminate oscillations as is done by
the conventional schemes.
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The DCD scheme was originally elaborated for the finite differences method; however, it has
been extended to other methods such as finite volumes or finite elements. High-order scheme have
been implemented.

As examples, many applications were conducted in problems with toroidal shocks in cylindrical
chambers [19], gas combustion shock waves [20].

The DCD scheme has been implemented and the computational code has been called
DCD-2D v1.

4.2.1. Finite differences formulation. In the computational domain, the finite differences equations
for Equation (7) spatially discredited using the DCD scheme [16] are given in their semi-discrete
form by [

�Û
�t

]n

i, j

=− 1

��
(Ĥn

i+1/2, j − Ĥn
i−1/2, j )−

1

��
(P̂n

i, j+1/2− P̂n
i, j−1/2)− Ŝni, j (12)

where �� is the length in the direction � and �� the length in the direction � of an element of the
computational grid as shown in Figure 4(b), and

Ĥn
i+1/2, j = F̂+

i+(1/2)L , j + F̂−
i+(1/2)R, j , P̂n

i, j+1/2= Ĝ+
i, j+(1/2)L +Ĝ−

i, j+(1/2)R

Ĥn
i−1/2, j = F̂+

i−(1/2)L , j + F̂−
i−(1/2)R, j , P̂n

i, j−1/2= Ĝ+
i, j−(1/2)L +Ĝ−

i, j−(1/2)R

(13)

where F̂± and Ĝ± are the numerical fluxes vectors with respect to fluxes vectors F and G,
respectively. Thus, for example, F̂± is defined as

F+
i+(1/2)L , j =F+

i, j + 1
2�

+
A [minmod(�F+

i−1/2, j ,�F+
i+1/2, j )]

F−
i+(1/2)R, j =F−

i+1, j − 1
2�

−
A [minmod(�F−

i+1/2, j ,�F−
i+3/2, j )]

F+
i−(1/2)L , j =F+

i−1, j + 1
2�

+
A [minmod(�F+

i−3/2, j ,�F+
i−1/2, j )]

F−
i−(1/2)R, j =F−

i, j − 1
2�

−
A [minmod(�F−

i−1/2, j ,�F−
i+1/2, j )]

where the variations numerical fluxes vectors are given by

�F+
i−3/2, j =F+

i−1, j −F+
i−2, j , �F−

i−1/2, j =F−
i, j −F−

i−1, j

�F+
i−1/2, j =F+

i, j −F+
i−1, j , �F−

i+1/2, j =F−
i+1, j −F−

i, j

�F+
i+1/2, j =F+

i+1, j −F+
i, j , �F−

i+3/2, j =F−
i+2, j −F−

i+1, j

The evaluations for Ĝ± are analogous. In Figure 5, one shows the computational cell to determine
the variations of the numerical flux vector.

The matrices, �, related to the Jacobian matrices A and B are given by

�±
A = I ∓��±

A , �±
B = I ∓��±

B (14)
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Figure 5. Computational cell.

where �±
A and �±

B are the diagonal matrices formed by the eigenvalues of A and B, respectively.
I is the identity matrix and � a parameter defined by

�= �t

��
(15)

where �t is the time step size. The limiting function ‘minmod’ is defined by

minmod(x, y)=
{
sgn(x)min{|x |, |y|} if sgn(x)=sgn(y)

0 if sgn(x) �=sgn(y)
(16)

where ‘sgn’ is the sign function.

4.2.2. Temporal discretization. The time step size �t , according to Peyret and Taylor [21], in the
computational domain, is given by

�t= C0

‖u‖
��

+ ‖v‖
��

+‖c‖
√

1

��2
+ 1

��2

(17)

where C0 is a positive constant (C0=5,6 in this work). c is the sound speed in the two-phase flow.
‖·‖ is the Euclidian norm of a matrix, for instance, the velocity vector component u=(uij)N×M ,
which is evaluated in all nodes of the computational domain. In the temporal discretization the
second-order Runge–Kutta method was used.
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5. NUMERICAL RESULTS: FALSE-TRANSIENT METHOD

In this work, as means of validating the DCD-2D v1 computer code, according the false-transient
method, one analyzes the convergent–divergent nozzle. For other works revise Avila [15]. Notwith-
standing, the problem to be solved and principal objective of this investigation is the steady-state
flashing of metastable liquid jets in the two-phase region or the two-phase expansion problem.

Used grids are some geometrical and others generated by means of bi univocal transformations
of the coordinates. The subscript used to identify the grid dimensions with (N+2)×(M+2) nodes
is (i=0,N+1; j =0,M+1), where i denote the points along a parallel line to the initial line, j
lines that follow approximately the streamlines of this flow, and M , N integer positive numbers.
Initial conditions may be arbitrary, but cannot be unrealistic. The DCD-2D v1 code supports all
these initial conditions; however, to speed up the process of capturing one includes shock waves
close to the beginning of the flow. Numerical convergence and efficient calculations are supported
with these cares.

The expression ‘EE GP’ means that one has used perfect gas state equation or ‘EE GP*’ when
the equation is in the form of p=(�−1)�e, where � is the specific heat ratio equal to 1.40 for the
calculation of one thermodynamic variable.

The system of units in this work is from the International System, SI, and each test was running
with a AMD Atlon (tm) 64X2 Dual Core Processor 5200+ 2.73GHz computer.

5.1. Convergent–divergent nozzle

The convergent–divergent nozzle problem (or De Laval) in steady-state regime is quasi one-
dimensional. The region of this nozzle is given by

D={(x, y)∈ R2 :0�x�3∧|y|�(1/8)[1+2.2(x−1.5)2]} (18)

where the area ratio is As/A∗ =5.95, with A∗ the throat area and As the exit area. This problem
is identical to the example presented by Anderson [22, p. 356]. In Figure 6 one has the grid for
the De Laval domain, D.

The physical and numerical boundary conditions are given in Table I. The entrance line, the

exit line, the curved lines for the upper and lower walls are the segments: AB, CD,
�

BC, and
�

DA,
respectively. The reservoir conditions are: p0=600E+03 and T0=320 and c=√

�(p/�).

Figure 6. Convergent–divergent nozzle grid.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:622–637
DOI: 10.1002/fld



632 J. A. J. AVILA, M. M. PIMENTA AND J. R. SIMÕES-MOREIRA

In Table II the analytical and numerical solutions are presented for the exit station of De Laval.
As well, it is shown the err, the shock wave location (s.w.l, in (m)), and the CPU time (h:min:s).
Observe that just the pressure has a relatively high err.

The Figures 7(a) and (b) represent the pressure and Mach number contours, respectively. In
each one observes the formation of a shock wave in the point 2.15m.

The Figures 8(a) and (b) represent, respectively, pressure and Mach number distributions.

Table I. Physical and numerical boundary conditions for the convergent–divergent nozzle.

AB
�

BC
�

DA CD

M 0.0982 V/c V/c V/c
T T0 TN+1, j =TN , j T0, j =T1, j EE GP
p p0 pN+1, j = pN , j p0, j = p1, j 0.678×p0
� EE GP EE GP EE GP �i,M+1=�i,M
e EE GP* EE GP* EE GP* EE GP*
u M×c uN+1, j =uN , j u0, j =u1, j ui,M+1=ui,M
v 0 vN+1, j =vN , j v0, j =v1, j vi,M+1=vi,M

Table II. Analytical and numerical solution for the convergent–divergent nozzle.

Analytical solution Numerical solution

Exit Exit Err %

M 0.143 0.140 2.1
T/T0 0.996 0.985 1.1
p/p0 0.678 0.791 16.7
s.w.l 2.15
CPU 00:44:43

Figure 7. (a) Pressure contours and (b) Mach number contours.
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Figure 8. (a) Pressure profile and (b) Mach number profile.

Table III. Grid size, radius R f =22E−03m.

Grid type Initial line Wall line Nodes total
M N M×N

A 77 161 12 397

Table IV. Boundary conditions and numerical solution.

Reservoir conditions Boundary conditions

P0=503,4E+03,T0=368.55 Initial line Far-field line Numerical solution

M 1
T 331.4
p 26 862 8000
x 0.2965
V 73.7
sw.l r1=16.2E−03

r2=14.7E−03
CPU 04:48:23

5.2. Two-phase expansion

The two-phase expansion problem is a steady-state phenomenon in a 2D axisymmetric domain,
in particular the two phase region. The test fluid was the isooctane (C8H18) and the used state
equation was obtained from the Lee–Kesler equation. The technique used to solve the mathematical
problem derived from it was the false-transient method. Several tests were conducted, but in this
work it is only presented the Test 11, for other results one is asked to see Avila [14]. The two-phase
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Figure 9. (a) Pressure contours; (b) Mach number contours; and (c) quality contours.

region has a radius R f =22E−03m (see Figure 3(a), R f =OC=OD). The shock wave length
(sw.l) is given by: the radial length, r1 (orthogonal projection of far most point of the wave in the
x axis), and axial length, r2 (origin to interception of wave with x axis). The superficial area of
the liquid core has a more or less parabolic shape (Figure 2(b)); one calls it the initial area and
we will denote it by A0, and the superficial area of the hemi-sphere (two-phase region) is called
by far-field area and denoted by A∞. In this test, the initial and far-field areas are, respectively,
A0=1.63E−05m2, A∞ =2.98E−03m2. The used grid has (M×N ) nodes, see Table III.
The reservoir conditions, boundary conditions, and numerical results can be seen in Table IV.
Figures 9(a)–(c) present pressure contours, Mach numbers, and quality, respectively. Observe

that at the extremes of initial line expansion is fast, while in its sides the same expansion is slower,
forming a cone with vertex at the nozzle entrance.
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Figure 10. (a) Pressure versus number of iterations for a fixed grid node; (b) pressure profile; (c) Mach
number profile; and (d) quality profile.

In Figure 10(a) one has the behavior during calculations of the point (50.184) of the grid.
One may see that in the steady state the fluid reached at this point after 24 000 iterations, after a
computational time of 04 h 48min 23 s. The pressure at this point reaches the value of 7868.2 Pa.
The following Figures 10(b)–(d) show pressure, Mach number, and quality profiles, respectively.
These profiles correspond to the grid line (i0=39; j=0.160). Finally, in Figure 11 one has the
surface of pressure contours in 3D.

The CDC scheme was implemented and applied to numerically solve the flashing of superheated
jets in the two-phase part of this flow. The results were very encouraging as, with some simplification
hypothesis, gave results that compared very well with the experimental measurements and photos.
The advantage of this method is that it gives transient solutions, as indicated in the references
cited in Section 4.2. This fact has encouraged us to pursue the solution for the whole domain,
even without all experimental results.
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Figure 11. Pressure contours in 3D.

6. CONCLUSIONS

For the false-transient method applied to flashing of metastable liquids in the two-phase region, the
DCD-2D v1 code directly captures the shock wave without a post-processing scheme as did the
codes (ShoWPhasT-2D v1 and ShoWPhasT-2D v2). However, it does not give yet good results for
the shock wave length when compared with these last ones. This method allows the determination
of velocity profiles and thermodynamic field across all the two-phase region of the flow. The
quality distribution was also determined.
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